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TA: LEE, Yat Long Luca
Email: yllee@math.cuhk.edu.hk
Office: Room 505, AB1

Office Hour: Send me an email first, then we will arrange a meeting (if you need it).
1 Review

e A set D in a metric space (X,d) is dense if for all x € X, there exists 7 > 0 such that
By(x)ND # 0.

Equivalently, D is dense in X if the closure of D is X, i.e., D = X.

A set E in (X,d) is nowhere dense if E has empty interior.

A set in (X, d) is of first category if it can be expressed as a countable union of nowhere
dense set.

A set in (X, d) is of second category if it is not of first category.

A set in (X, d) is called residual if its complement is of a first category.

Theorem 4.9 (Baire Category Theorem) In a complete metric space, the countable

union of nowhere dense sets has empty interior. Equivalently, all residual sets are dense.

Remark: Nowhere dense set is defined such that its closure has empty interior. If the set is
closed, then the above statement require only empty interior as the closure of a closed set is the

closed set itself. L.e., countable union of closed set with empty interior has empty interior.

Theorem 4.9’ (Baire Category Theorem) Let (X, d) be a complete metric space and
{Gr} be a sequence of open, dense subsets in X. Then the set E = ()2, G, is dense.

Exercise 1

Source: Previous HW Problem

Use Baire category theorem to show that transcendental numbers are dense in the set of real

numbers.

Solution:
Recall that a number a € R is called algebraic if it is a root of a polynomial with integer coeffi-
cients, i.e., for some nonzero p € Z[x], we have p(a) = 0, and is called transcendental if otherwise.

Let A and T be the set of all algebraic and transcendental numbers in R, then R =AU T.
Recall that A is countable, then let A, = {a1, ..., a,}, such that | J,, A, = A and hence

n
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However, R\ {a1,...,a,} is dense, and open. Hence, T is dense by Baire category theorem.
|

Exercise 2

Source: Royden and Fitzpatrick

Let F be a family of continuous real-valued functions on a complete metric space X that is
pointwise bounded, i.e., for each x € X, there is a constant M, such that

|f(z)| < M,, forall f e F.

Then there is a nonempty open subset U of X on which F is uniformly bounded in the sense
that there is a constant M such that

|f| <M onU forall feF.

Solution:

For each n, define E,, := {x € X : |f(z)| <n, for all f € F}. E, is closed, since f is continuous.
Moreover, since F is pointwise bounded, for each = € X, there is an n such that |f(x)| < n for
all f e F, ie., x € E,. Hence,

o0
X = U E,.
n=1

Since X is complete, then Corollary 4.10 from the lecture notes implies that at least one of
the F),’s has a nonempty interior. So, we can choose an n for which F, contains an open ball
B(z,r). Hence, we obtain that on B(z,r), all f € F is bounded by n. Therefore, the theorem
is proved by taking U = B(x,r) and M = n.

|

Exercise 3

This exercise is a corollary of the Baire category theorem.
Source: Royden and Fitzpatrick

Let X be a complete metric space and {F,}°2; a countable collection of closed subsets of
X. Then [J;2 | OF, has empty interior.

Solution:

Recall the following definitions
e A point x € F is called an interior point of E if there is a r > 0 such that B(x,r) C E.
e The collection of interior points of F is the interior of E.
e A point z € X \ E is an exterior point of E if there is a r > 0 such that B(z,r) C X \ E.

e The collection of exterior points of E is the exterior of E.
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e A point z € X is a boundary point of E if there is a r > 0 such that B(x,r) contains
points in the interior of £ and the exterior of E.

e The collection of boundary points of E is the boundary of E, denoted by JF.

e An equivalent definition of 9E would be 0F = EN X \ E

One can see that JF has empty interior, since for all z € 9F, and all » > 0, B(z,r) ¢ JE. One
sees that OF is also closed, since it is the intersection of two closed sets.
Then {0F,} is a collection of closed sets with empty interior. By Baire category theorem,
(U,, OF}, has empty interior.
[ |

Exercise 4

Source: Previous HW and Leon’s Tutorial notes

A function f € C]0,1] is called non-monotonic if for all closed subintervals J C I := [0,1]
of positive length, f is not monotonic on J. Show that N := {f € C(I) : f is non-monotonic}
is dense in C(I).

Solution:
By Baire category theorem, it suffices to show that A is residual.
Let A:={(x,n) e IXN:z € Q,z # 0,1}, then A is countable. For all (x,n) € A, we define

o Eon={feC(): forallye B%(:c) NI (f(y) — f(x))(y —x) > 0} ie., f is increasing.

o Fon=1{fe€C(): forally e B%(a:) NI (f(y) — f(z))(y —x) <0} ie., f is decreasing.

Note that f ¢ N/ <= f is not non-monotonic <= there exists J C I as above such that f
is monotonic over J <= there exists (z,n) € As.t. f € & UF,,. Hence, we deduced that
C(I) \N = gcc,n U Fx,n-

Following the idea, we need to show that &, , U F;, is nowhere dense. That is, we want to
show that &, and F,, are nowhere dense.

Show that &, ,, is nowhere dense.
Step 1 - &, is closed.

For all converging sequence { fr} C &5, our goals is to show that the limit of fj, denoted by f,
converges to f € C(I).

By definition and assumption, for all kK € N, all y € Bi(z) NI, we have that

(fe(y) — fu(@)(y —2) >0

then

(f(y) = f(@)(y — =) (fe(y) — fe(2))(y —x) > 0.

= lim
k—o00
Hence f € &, .
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Step 2 - &, is nowhere dense.

For all f € E, ,,, we show that for all € > 0, the ball B.(f) & E; .

By Weierstrass approximation theorem, there exists a polynomial P s.t. P € B%( f). Since
P|; is C', it is Lipschitz continuous. We let L to be its Lipschitz constant.

For all n € N, define ¢ : I — R be the jig-saw function, i.e., a piecewise linear, %-periodic
functions with slopes £2N. Define gn(z) := P(z) + §pn(x). Then g is continuous on I. We
check that

e gn € B:(f). Since
=

£ e 9 g
lgn — flloo H +oen —f fHgen|s5+3

o gy ¢ & for some N. Since for all y € I, with y > z,

(9n(y) = gv(@))(y — ) = (P(y) + Sen(y) = P(a) = Son(@))(y — )
= (P(y) = P@) + Son(y) — Son(@)(y — )
< (La—y) + S (en(y) —en@)y - )

Now we want to obtain an estimate related to the latter term. Choose N € N satisfying

L
N>L

2i—1 i . . :
N ST < 7, forsomei € N;1 <i< N

Choose any y € I with z < y < ﬁ and y —x < %, then
en(y) —pn(x) = (=2N)(y — =),
hence
(95 (y) = g (@))(y — 2) < (L(y — 2) = Ne(y — 2)(y — 2)) = (L — Ne)(y — 2)* < 0.
Therefore g ¢ &y .-

Thus, &, is nowhere dense.

One can then verify that F; , is nowhere dense in a very similar manner, and the claim is
thus proven.
|
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